Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
1.
Clin Ther ; 45(3): e103-e114, 2023 03.
Article in English | MEDLINE | ID: covidwho-2317433

ABSTRACT

PURPOSE: Metabolic syndrome (MetS) is a major public health concern that increases the risk of cardiovascular disease and mortality. In previous studies of MetS management, low-carbohydrate diets have been strongly emphasized, despite the fact that many apparently healthy individuals have difficulties adhering to these diets on a long-term basis. The purpose of the present study was to elucidate the effects of a moderately restricted carbohydrate diet (MRCD) on cardiometabolic risk factors in women with MetS. METHODS: This parallel 3-month, single-blind randomized controlled trial was conducted in Tehran, Iran, among 70 women with overweight or obesity aged 20 to 50 years with MetS. Patients were randomly allocated to receive either MRCD (42%-45% carbohydrates and 35%-40% fats) (n = 35) or a normal weight loss diet (NWLD) (52%-55% carbohydrates and 25%-30% fats) (n = 35). Both diets contained the same quantity of protein, which accounted for 15% to 17% of total energy. Anthropometric measurements, blood pressure, lipid profile, and glycemic indices were all assessed before and after the intervention. FINDINGS: Compared with the NWLD group, following an MRCD significantly decreased weight (-4.82 vs -2.40 kg; P = 0.01), body mass index (-1.88 vs -0.94 kg/m2; P = 0.01), waist circumference (-5.34 vs -2.75 cm; P = 0.01), hip circumference (-2.58 vs -1.11 cm; P = 0.01), serum triglyceride (-26.8 vs -7.19 mg/dL; P = 0.01), and increased serum HDL-C levels (1.89 vs. 0.24 mg/dL; P = 0.01). There was no significant difference between the 2 diets in waist-to-hip ratio, serum total cholesterol, serum LDL-C, systolic and diastolic blood pressure, fasting blood glucose, insulin levels, or the homeostasis model assessment for insulin resistance. IMPLICATIONS: Moderate carbohydrate replacement with dietary fats significantly improved weight, body mass index, waist circumference, hip circumference, serum triglyceride, and HDL-C levels among women with MetS. Iranian Registry of Clinical Trials identifier: IRCT20210307050621N1.


Subject(s)
Metabolic Syndrome , Female , Humans , Overweight/complications , Cardiometabolic Risk Factors , Single-Blind Method , Iran , Dietary Carbohydrates/adverse effects , Obesity , Body Mass Index , Blood Glucose/metabolism , Triglycerides , Risk Factors
2.
Int J Obes (Lond) ; 46(8): 1478-1486, 2022 08.
Article in English | MEDLINE | ID: covidwho-1852402

ABSTRACT

BACKGROUND: COVID-19 severity varies widely. Although some demographic and cardio-metabolic factors, including age and obesity, are associated with increasing risk of severe illness, the underlying mechanism(s) are uncertain. SUBJECTS/METHODS: In a meta-analysis of three independent studies of 1471 participants in total, we investigated phenotypic and genetic factors associated with subcutaneous adipose tissue expression of Angiotensin I Converting Enzyme 2 (ACE2), measured by RNA-Seq, which acts as a receptor for SARS-CoV-2 cellular entry. RESULTS: Lower adipose tissue ACE2 expression was associated with multiple adverse cardio-metabolic health indices, including type 2 diabetes (T2D) (P = 9.14 × 10-6), obesity status (P = 4.81 × 10-5), higher serum fasting insulin (P = 5.32 × 10-4), BMI (P = 3.94 × 10-4), and lower serum HDL levels (P = 1.92 × 10-7). ACE2 expression was also associated with estimated proportions of cell types in adipose tissue: lower expression was associated with a lower proportion of microvascular endothelial cells (P = 4.25 × 10-4) and higher proportion of macrophages (P = 2.74 × 10-5). Despite an estimated heritability of 32%, we did not identify any proximal or distal expression quantitative trait loci (eQTLs) associated with adipose tissue ACE2 expression. CONCLUSIONS: Our results demonstrate that individuals with cardio-metabolic features known to increase risk of severe COVID-19 have lower background ACE2 levels in this highly relevant tissue. Reduced adipose tissue ACE2 expression may contribute to the pathophysiology of cardio-metabolic diseases, as well as the associated increased risk of severe COVID-19.


Subject(s)
Adipose Tissue , Angiotensin-Converting Enzyme 2 , COVID-19 , Adipose Tissue/metabolism , Angiotensin-Converting Enzyme 2/genetics , Angiotensin-Converting Enzyme 2/metabolism , COVID-19/complications , COVID-19/genetics , Cardiometabolic Risk Factors , Diabetes Mellitus, Type 2/genetics , Endothelial Cells/metabolism , Humans , Obesity , SARS-CoV-2
3.
Cardiovasc Diabetol ; 21(1): 24, 2022 02 14.
Article in English | MEDLINE | ID: covidwho-1686015

ABSTRACT

BACKGROUND: Pre-existing cardiometabolic comorbidities place SARS-CoV-2 positive patients at a greater risk for poorer clinical course and mortality than those without it. We aimed to analyze real-world registry data focused primarily on participants with cardiometabolic diseases (CMD), which were remotely obtained via a digital platform. METHODS: Participants were divided into two groups: CMD or no cardiometabolic disease (non-CMD). They were evaluated based on their medical history, current medications/supplements, COVID-19 status, demographics, and baseline characteristics. The frequency of medications/supplements for CMD were compared using relative risks and 95% confidence intervals. The WHO (Five) Well-Being Index (WHO-5) were collected monthly for 6 months to assess psychological well-being which included cheerfulness, calmness, vigor, rest, and engagement with daily activities of interest. RESULTS: The 791 enrollees represented 49 U.S. states. The CMD group had significantly higher (p < 0.0001) BMI (mean + 3.04 kg/m2) and age (mean + 9.15 years) compared to non-CMD group. In the CMD group, participants who tested positive for COVID-19 had lower (p < 0.0001) well-being scores than those without COVID-19. For the 274 participants on CMD medications/supplements, there was no statistical difference in risk of COVID-19 contracture based on medication/supplement type; however, all six participants who were not being treated for CMD were COVID-19 positive (RR ~ 104). For 89 participants who were on treatment for diabetes or insulin resistance, there was a 90% reduced risk of COVID-19 incidence (p = 0.0187). CONCLUSION: The well-being score of the CMD group was dependent on whether they tested positive for COVID-19. Type of CMD treatment did not impact COVID-19 status, but absence of treatment significantly increased COVID-19 incidence. With respect to SARS-CoV-2, our analysis supports continued use of the statins, ACE-I, ARBs, and diabetes medications in CMD patients. TRIAL REGISTRATION: ClinicalTrials.gov Identifier: NCT04348942.


Subject(s)
COVID-19/epidemiology , Heart Diseases/epidemiology , Metabolic Diseases/epidemiology , Adult , COVID-19/diagnosis , Cardiometabolic Risk Factors , Comorbidity , Female , Heart Diseases/diagnosis , Heart Diseases/therapy , Humans , Incidence , Longitudinal Studies , Male , Metabolic Diseases/diagnosis , Metabolic Diseases/therapy , Middle Aged , Prognosis , Prospective Studies , Registries , Risk Assessment , Time Factors , United States/epidemiology
4.
Lancet Diabetes Endocrinol ; 9(9): 586-594, 2021 09.
Article in English | MEDLINE | ID: covidwho-1545532

ABSTRACT

BACKGROUND: COVID-19 can lead to multiorgan failure. Dapagliflozin, a SGLT2 inhibitor, has significant protective benefits for the heart and kidney. We aimed to see whether this agent might provide organ protection in patients with COVID-19 by affecting processes dysregulated during acute illness. METHODS: DARE-19 was a randomised, double-blind, placebo-controlled trial of patients hospitalised with COVID-19 and with at least one cardiometabolic risk factor (ie, hypertension, type 2 diabetes, atherosclerotic cardiovascular disease, heart failure, and chronic kidney disease). Patients critically ill at screening were excluded. Patients were randomly assigned 1:1 to dapagliflozin (10 mg daily orally) or matched placebo for 30 days. Dual primary outcomes were assessed in the intention-to-treat population: the outcome of prevention (time to new or worsened organ dysfunction or death), and the hierarchial composite outcome of recovery (change in clinical status by day 30). Safety outcomes, in patients who received at least one study medication dose, included serious adverse events, adverse events leading to discontinuation, and adverse events of interest. This study is registered with ClinicalTrials.gov, NCT04350593. FINDINGS: Between April 22, 2020 and Jan 1, 2021, 1250 patients were randomly assigned with 625 in each group. The primary composite outcome of prevention showed organ dysfunction or death occurred in 70 patients (11·2%) in the dapagliflozin group, and 86 (13·8%) in the placebo group (hazard ratio [HR] 0·80, 95% CI 0·58-1·10; p=0·17). For the primary outcome of recovery, 547 patients (87·5%) in the dapagliflozin group and 532 (85·1%) in the placebo group showed clinical status improvement, although this was not statistically significant (win ratio 1·09, 95% CI 0·97-1·22; p=0·14). There were 41 deaths (6·6%) in the dapagliflozin group, and 54 (8·6%) in the placebo group (HR 0·77, 95% CI 0·52-1·16). Serious adverse events were reported in 65 (10·6%) of 613 patients treated with dapagliflozin and in 82 (13·3%) of 616 patients given the placebo. INTERPRETATION: In patients with cardiometabolic risk factors who were hospitalised with COVID-19, treatment with dapagliflozin did not result in a statistically significant risk reduction in organ dysfunction or death, or improvement in clinical recovery, but was well tolerated. FUNDING: AstraZeneca.


Subject(s)
Benzhydryl Compounds/administration & dosage , COVID-19/complications , Cardiometabolic Risk Factors , Glucosides/administration & dosage , Multiple Organ Failure/prevention & control , Sodium-Glucose Transporter 2 Inhibitors/administration & dosage , Aged , Double-Blind Method , Female , Humans , Male , Middle Aged , Multiple Organ Failure/complications , Treatment Outcome
5.
Cardiovasc Res ; 118(2): 461-474, 2022 01 29.
Article in English | MEDLINE | ID: covidwho-1510904

ABSTRACT

AIMS: Coronavirus disease 2019 (COVID-19) can lead to multiorgan damage. MicroRNAs (miRNAs) in blood reflect cell activation and tissue injury. We aimed to determine the association of circulating miRNAs with COVID-19 severity and 28 day intensive care unit (ICU) mortality. METHODS AND RESULTS: We performed RNA-Seq in plasma of healthy controls (n = 11), non-severe (n = 18), and severe (n = 18) COVID-19 patients and selected 14 miRNAs according to cell- and tissue origin for measurement by reverse transcription quantitative polymerase chain reaction (RT-qPCR) in a separate cohort of mild (n = 6), moderate (n = 39), and severe (n = 16) patients. Candidates were then measured by RT-qPCR in longitudinal samples of ICU COVID-19 patients (n = 240 samples from n = 65 patients). A total of 60 miRNAs, including platelet-, endothelial-, hepatocyte-, and cardiomyocyte-derived miRNAs, were differentially expressed depending on severity, with increased miR-133a and reduced miR-122 also being associated with 28 day mortality. We leveraged mass spectrometry-based proteomics data for corresponding protein trajectories. Myocyte-derived (myomiR) miR-133a was inversely associated with neutrophil counts and positively with proteins related to neutrophil degranulation, such as myeloperoxidase. In contrast, levels of hepatocyte-derived miR-122 correlated to liver parameters and to liver-derived positive (inverse association) and negative acute phase proteins (positive association). Finally, we compared miRNAs to established markers of COVID-19 severity and outcome, i.e. SARS-CoV-2 RNAemia, age, BMI, D-dimer, and troponin. Whilst RNAemia, age and troponin were better predictors of mortality, miR-133a and miR-122 showed superior classification performance for severity. In binary and triplet combinations, miRNAs improved classification performance of established markers for severity and mortality. CONCLUSION: Circulating miRNAs of different tissue origin, including several known cardiometabolic biomarkers, rise with COVID-19 severity. MyomiR miR-133a and liver-derived miR-122 also relate to 28 day mortality. MiR-133a reflects inflammation-induced myocyte damage, whilst miR-122 reflects the hepatic acute phase response.


Subject(s)
COVID-19/mortality , MicroRNAs/blood , SARS-CoV-2 , Adult , Aged , Biomarkers , COVID-19/complications , COVID-19/genetics , Cardiometabolic Risk Factors , Female , High-Throughput Nucleotide Sequencing , Humans , Intensive Care Units , Male , Middle Aged , Patient Acuity
6.
Cardiovasc Res ; 117(14): 2705-2729, 2021 12 17.
Article in English | MEDLINE | ID: covidwho-1411978

ABSTRACT

The cardiovascular system is significantly affected in coronavirus disease-19 (COVID-19). Microvascular injury, endothelial dysfunction, and thrombosis resulting from viral infection or indirectly related to the intense systemic inflammatory and immune responses are characteristic features of severe COVID-19. Pre-existing cardiovascular disease and viral load are linked to myocardial injury and worse outcomes. The vascular response to cytokine production and the interaction between severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) and angiotensin-converting enzyme 2 receptor may lead to a significant reduction in cardiac contractility and subsequent myocardial dysfunction. In addition, a considerable proportion of patients who have been infected with SARS-CoV-2 do not fully recover and continue to experience a large number of symptoms and post-acute complications in the absence of a detectable viral infection. This conditions often referred to as 'post-acute COVID-19' may have multiple causes. Viral reservoirs or lingering fragments of viral RNA or proteins contribute to the condition. Systemic inflammatory response to COVID-19 has the potential to increase myocardial fibrosis which in turn may impair cardiac remodelling. Here, we summarize the current knowledge of cardiovascular injury and post-acute sequelae of COVID-19. As the pandemic continues and new variants emerge, we can advance our knowledge of the underlying mechanisms only by integrating our understanding of the pathophysiology with the corresponding clinical findings. Identification of new biomarkers of cardiovascular complications, and development of effective treatments for COVID-19 infection are of crucial importance.


Subject(s)
COVID-19/complications , Cardiovascular Diseases/virology , Angiotensin-Converting Enzyme 2/metabolism , COVID-19/enzymology , COVID-19/etiology , COVID-19/physiopathology , COVID-19/therapy , Cardiometabolic Risk Factors , Cardiovascular Diseases/enzymology , Cardiovascular Diseases/physiopathology , Clinical Trials as Topic , Humans , Inflammation/complications , Inflammation/virology , Microcirculation , Sex Characteristics , Post-Acute COVID-19 Syndrome
7.
BMC Cardiovasc Disord ; 21(1): 332, 2021 07 06.
Article in English | MEDLINE | ID: covidwho-1344072

ABSTRACT

Recently, we face a surge in the fast-forward Coronavirus Disease 2019 (COVID-19) pandemic with nearly 170 million confirmed cases and almost 3.5 million confirmed deaths at the end of May 2021. Obesity, also known as the pandemic of the 21st century, has been evolving as an adverse prognostic marker. Obesity is associated with a higher risk of being SARS-CoV-2-positive (46%), as well as hospitalization (113%) and death (48%) due to COVID-19. It is especially true for subjects with morbid obesity. Also, observational studies suggest that in the case of COVID-19, no favorable "obesity paradox" is observed. Therefore, it is postulated to introduce a new entity, i.e., coronavirus disease-related cardiometabolic syndrome (CIRCS). In theory, it applies to all stages of COVID-19, i.e., prevention, acute proceedings (from COVID-19 diagnosis to resolution or three months), and long-term outcomes. Consequently, lifestyle changes, glycemic control, and regulation of the renin-angiotensin-aldosterone pathway have crucial implications for preventing and managing subjects with COVID-19. Finally, it is crucial to use cardioprotective drugs such as angiotensin-converting enzyme inhibitors/angiotensin II receptor blockers and statins. Nevertheless, there is the need to conduct prospective studies and registries better to evaluate the issue of obesity in COVID-19 patients.


Subject(s)
COVID-19/epidemiology , Metabolic Syndrome/epidemiology , Obesity/epidemiology , COVID-19/diagnosis , COVID-19/therapy , Cardiometabolic Risk Factors , Diet/adverse effects , Exercise , Hospitalization , Humans , Metabolic Syndrome/diagnosis , Metabolic Syndrome/therapy , Obesity/diagnosis , Obesity/therapy , Physical Distancing , Preventive Health Services , Prognosis , Risk Assessment , Sedentary Behavior
8.
BMC Endocr Disord ; 21(1): 144, 2021 Jul 03.
Article in English | MEDLINE | ID: covidwho-1295459

ABSTRACT

BACKGROUND: Although obesity, defined by body mass index (BMI), has been associated with a higher risk of hospitalisation and more severe course of illness in Covid-19 positive patients amongst the British population, it is unclear if this translates into increased mortality. Furthermore, given that BMI is an insensitive indicator of adiposity, the effect of adipose volume on Covid-19 outcomes is also unknown. METHODS: We used the UK Biobank repository, which contains clinical and anthropometric data and is linked to Public Health England Covid-19 healthcare records, to address our research question. We performed age- and sex- adjusted logistic regression and Chi-squared test to compute the odds for Covid-19-related mortality as a consequence of increasing BMI, and other more sensitive indices of adiposity such as waist:hip ratio (WHR) and percent body fat, as well as concomitant cardiometabolic illness. RESULTS: 13,502 participants were tested for Covid-19 (mean age 70 ± 8 years, 48.9% male). 1582 tested positive (mean age 68 ± 9 years, 52.8% male), of which 305 died (mean age 75 ± 6 years, 65.5% male). Increasing adiposity was associated with higher odds for Covid-19-related mortality. For every unit increase in BMI, WHR and body fat, the odds of death amongst Covid19-positive participants increased by 1.04 (95% CI 1.01-1.07), 10.71 (95% CI 1.57-73.06) and 1.03 (95% CI 1.01-1.05), respectively (all p < 0.05). Referenced to Covid-19 positive participants with a normal weight (BMI 18.5-25 kg/m2), Covid-19 positive participants with BMI > 35 kg/m2 had significantly higher odds of Covid-19-related death (OR 1.70, 95% CI 1.06-2.74, p < 0.05). Covid-19-positive participants with metabolic (diabetes, hypertension, dyslipidaemia) or cardiovascular morbidity (atrial fibrillation, angina) also had higher odds of death. CONCLUSIONS: Anthropometric indices that are more sensitive to adipose volume and its distribution than BMI, as well as concurrent cardiometabolic illness, are associated with higher odds of Covid-19-related mortality amongst the UK Biobank cohort that tested positive for the infection. These results suggest adipose volume may contribute to adverse Covid-19-related outcomes associated with obesity.


Subject(s)
Adiposity/physiology , COVID-19/mortality , Cardiovascular Diseases/epidemiology , Metabolic Syndrome/epidemiology , Obesity/epidemiology , Aged , Aged, 80 and over , Biological Specimen Banks/statistics & numerical data , Body Mass Index , COVID-19/complications , COVID-19/pathology , Cardiometabolic Risk Factors , Cardiovascular Diseases/complications , Cardiovascular Diseases/mortality , Cohort Studies , Databases, Factual , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/epidemiology , Diabetes Mellitus, Type 2/mortality , Female , Hospital Mortality , Humans , Male , Metabolic Syndrome/complications , Metabolic Syndrome/mortality , Middle Aged , Morbidity , Mortality , Obesity/complications , Obesity/mortality , Risk Factors , SARS-CoV-2/physiology , United Kingdom/epidemiology
9.
J Endocrinol Invest ; 44(12): 2845-2847, 2021 Dec.
Article in English | MEDLINE | ID: covidwho-1242833

ABSTRACT

PURPOSE: COVID-19 pandemics and cardiometabolic health are mutually interconnected. Chronic metabolic diseases are known risk factors for increased mortality after SARS-CoV-2 infection. In turn, COVID pandemics imposed sudden changes in lifestyle and social isolation with consequent potential cardiometabolic sequelae. The present study aimed at investigating the impact of changes in lifestyle and social life on metabolic profile in hyperprolactinemic or osteoporotic patients without pre-existing cardiometabolic diseases at the time of COVID-19. METHODS: The primary study outcome measurement was the prevalence of obesity, arterial hypertension, impaired glucose tolerance (IGT) or diabetes mellitus (DM), dyslipidemia and metabolic syndrome after COVID-19 outbreak. Seventy-four patients (21 men and 53 women, aged 51.8 ± 17.8 years) were admitted to the outpatient clinic of the Neuroendocrine Disease Unit at University "Federico II" of Naples, Italy, as per their routine clinical practice because of tumoral and non-tumoral hyperprolactinemia in 52 patients (70.3%), and osteoporosis/osteopenia in 22 (29.7%). Among female patients, 25 (47.2%) were at menopausal age. RESULTS: At the end of lockdown, prevalence of obesity (from 37.8% to 51.3%, p < 0.0001), dyslipidemia (from 28.4 to 48.6%, p = 0.003) and metabolic syndrome (from 14.9 to 27%, p < 0.0001) significantly increased compared to pre-COVID evaluation. No significant change was found in the prevalence of arterial hypertension and IGT/DM. CONCLUSION: SARS-CoV-2 outbreak has led to a rapid increase in the prevalence of metabolic syndrome, potentially contributing to the increased COVID-19 related mortality.


Subject(s)
COVID-19 , Cardiometabolic Risk Factors , Metabolic Syndrome/epidemiology , Pandemics , Quarantine , Adult , Aged , Aged, 80 and over , Dyslipidemias/epidemiology , Female , Health Status , Humans , Hyperprolactinemia/complications , Italy/epidemiology , Life Style , Male , Middle Aged , Obesity/epidemiology , Osteoporosis/complications , Prevalence , Social Environment
11.
Diabetes Obes Metab ; 23(4): 886-896, 2021 04.
Article in English | MEDLINE | ID: covidwho-1171152

ABSTRACT

AIMS: Coronavirus disease 2019 (COVID-19) is caused by a novel severe acute respiratory syndrome coronavirus 2. It can lead to multiorgan failure, including respiratory and cardiovascular decompensation, and kidney injury, with significant associated morbidity and mortality, particularly in patients with underlying metabolic, cardiovascular, respiratory or kidney disease. Dapagliflozin, a sodium-glucose cotransporter-2 inhibitor, has shown significant cardio- and renoprotective benefits in patients with type 2 diabetes (with and without atherosclerotic cardiovascular disease), heart failure and chronic kidney disease, and may provide similar organ protection in high-risk patients with COVID-19. MATERIALS AND METHODS: DARE-19 (NCT04350593) is an investigator-initiated, collaborative, international, multicentre, randomized, double-blind, placebo-controlled study testing the dual hypotheses that dapagliflozin can reduce the incidence of cardiovascular, kidney and/or respiratory complications or all-cause mortality, or improve clinical recovery, in adult patients hospitalized with COVID-19 but not critically ill on admission. Eligible patients will have ≥1 cardiometabolic risk factor for COVID-19 complications. Patients will be randomized 1:1 to dapagliflozin 10 mg or placebo. Primary efficacy endpoints are time to development of new or worsened organ dysfunction during index hospitalization, or all-cause mortality, and the hierarchical composite endpoint of change in clinical status through day 30 of treatment. Safety of dapagliflozin in individuals with COVID-19 will be assessed. CONCLUSIONS: DARE-19 will evaluate whether dapagliflozin can prevent COVID-19-related complications and all-cause mortality, or improve clinical recovery, and assess the safety profile of dapagliflozin in this patient population. Currently, DARE-19 is the first large randomized controlled trial investigating use of sodium-glucose cotransporter 2 inhibitors in patients with COVID-19.


Subject(s)
Benzhydryl Compounds/therapeutic use , COVID-19 Drug Treatment , Cardiovascular Diseases/prevention & control , Glucosides/therapeutic use , Kidney Diseases/prevention & control , Mortality , Respiratory Insufficiency/drug therapy , Sodium-Glucose Transporter 2 Inhibitors/therapeutic use , Atherosclerosis/epidemiology , COVID-19/complications , COVID-19/epidemiology , Cardiometabolic Risk Factors , Cardiovascular Diseases/etiology , Cause of Death , Comorbidity , Diabetes Mellitus, Type 2/epidemiology , Disease Progression , Double-Blind Method , Heart Failure/epidemiology , Humans , Hypertension/epidemiology , Kidney Diseases/etiology , Multicenter Studies as Topic , Randomized Controlled Trials as Topic , Renal Insufficiency, Chronic/epidemiology , Respiratory Insufficiency/etiology , SARS-CoV-2 , Treatment Outcome
12.
PLoS One ; 16(4): e0248602, 2021.
Article in English | MEDLINE | ID: covidwho-1167090

ABSTRACT

BACKGROUND: SARS-CoV-2 is a rapidly spreading coronavirus responsible for the Covid-19 pandemic, which is characterized by severe respiratory infection. Many factors have been identified as risk factors for SARS-CoV-2, with much early attention being paid to body mass index (BMI), which is a well-known cardiometabolic risk factor. OBJECTIVE: This study seeks to examine the impact of additional baseline cardiometabolic risk factors including high density lipoprotein-cholesterol (HDL-C), low density lipoprotein-cholesterol (LDL-C), Apolipoprotein A-I (ApoA-I), Apolipoprotein B (ApoB), triglycerides, hemoglobin A1c (HbA1c) and diabetes on the odds of testing positive for SARS-CoV-2 in UK Biobank (UKB) study participants. METHODS: We examined the effect of BMI, lipid profiles, diabetes and alcohol intake on the odds of testing positive for SARS-Cov-2 among 9,005 UKB participants tested for SARS-CoV-2 from March 16 through July 14, 2020. Odds ratios and 95% confidence intervals were computed using logistic regression adjusted for age, sex and ancestry. RESULTS: Higher BMI, Type II diabetes and HbA1c were associated with increased SARS-CoV-2 odds (p < 0.05) while HDL-C and ApoA-I were associated with decreased odds (p < 0.001). Though the effect of BMI, Type II diabetes and HbA1c were eliminated when HDL-C was controlled, the effect of HDL-C remained significant when BMI was controlled for. LDL-C, ApoB and triglyceride levels were not found to be significantly associated with increased odds. CONCLUSION: Elevated HDL-C and ApoA-I levels were associated with reduced odds of testing positive for SARS-CoV-2, while higher BMI, type II diabetes and HbA1c were associated with increased odds. The effects of BMI, type II diabetes and HbA1c levels were no longer significant after controlling for HDL-C, suggesting that these effects may be mediated in part through regulation of HDL-C levels. In summary, our study suggests that baseline HDL-C level may be useful for stratifying SARS-CoV-2 infection risk and corroborates the emerging picture that HDL-C may confer protection against sepsis in general and SARS-CoV-2 in particular.


Subject(s)
COVID-19/epidemiology , Cardiometabolic Risk Factors , Diabetes Mellitus, Type 2/epidemiology , Aged , Apolipoprotein A-I/analysis , Apolipoprotein B-100/analysis , Biological Specimen Banks , Biomarkers/analysis , Body Mass Index , Cholesterol, HDL/analysis , Cholesterol, LDL/analysis , Female , Glycated Hemoglobin/analysis , Humans , Male , Middle Aged , Triglycerides/analysis , United Kingdom
13.
Glob Heart ; 16(1): 15, 2021 02 17.
Article in English | MEDLINE | ID: covidwho-1145668

ABSTRACT

Background: SARS-CoV-2 pandemic has modified the cardiovascular care of ambulatory patients. The aim of this survey was to study changes in lifestyle habits, treatment adherence, and mental health status in patients with cardiometabolic disease, but no clinical evidence of COVID-19. Methods: A cross-sectional survey was conducted in ambulatory patients with cardiometabolic disease using paper/digital surveys. Variables investigated included socioeconomic status, physical activity, diet, tobacco use, alcohol intake, treatment discontinuation, and psychological symptoms. Results: A total of 4,216 patients (50.9% males, mean age 60.3 ± 15.3 years old) from 13 Spanish-speaking Latin American countries were enrolled. Among the study population, 46.4% of patients did not have contact with a healthcare provider, 31.5% reported access barriers to treatments and 17% discontinued some medication. Multivariate analysis showed that non-adherence to treatment was more prevalent in the secondary prevention group: peripheral vascular disease (OR 1.55, CI 1.08-2.24; p = 0.018), heart failure (OR 1.36, CI 1.05-1.75; p = 0.017), and coronary artery disease (OR 1.29 CI 1.04-1.60; p = 0.018). No physical activity was reported by 38% of patients. Only 15% of patients met minimum recommendations of physical activity (more than 150 minutes/week) and vegetable and fruit intake. Low/very low income (45.5%) was associated with a lower level of physical activity (p < 0.0001), less fruit and vegetables intake (p < 0.0001), more tobacco use (p < 0.001) and perception of depression (p < 0.001). Low educational level was also associated with the perception of depression (OR 1.46, CI 1.26-1.70; p < 0.01). Conclusions: Patients with cardiometabolic disease but without clinical evidence of COVID-19 showed significant medication non-adherence, especially in secondary prevention patients. Deterioration in lifestyle habits and appearance of depressive symptoms during the pandemic were frequent and related to socioeconomic status.


Subject(s)
COVID-19 , Cardiovascular Diseases/therapy , Depression/psychology , Diabetes Mellitus/therapy , Diet , Dyslipidemias/therapy , Exercise , Treatment Adherence and Compliance/statistics & numerical data , Adult , Aged , Alcohol Drinking/epidemiology , Arrhythmias, Cardiac/therapy , Cardiometabolic Risk Factors , Cigarette Smoking/epidemiology , Coronary Artery Disease/therapy , Educational Status , Female , Health Services Accessibility , Heart Failure/therapy , Humans , Hypertension/therapy , Latin America/epidemiology , Male , Mental Health , Middle Aged , Outpatients , Peripheral Vascular Diseases/therapy , SARS-CoV-2 , Secondary Prevention , Social Class , Surveys and Questionnaires
14.
PLoS Med ; 18(3): e1003553, 2021 03.
Article in English | MEDLINE | ID: covidwho-1117467

ABSTRACT

BACKGROUND: Epidemiological studies report associations of diverse cardiometabolic conditions including obesity with COVID-19 illness, but causality has not been established. We sought to evaluate the associations of 17 cardiometabolic traits with COVID-19 susceptibility and severity using 2-sample Mendelian randomization (MR) analyses. METHODS AND FINDINGS: We selected genetic variants associated with each exposure, including body mass index (BMI), at p < 5 × 10-8 from genome-wide association studies (GWASs). We then calculated inverse-variance-weighted averages of variant-specific estimates using summary statistics for susceptibility and severity from the COVID-19 Host Genetics Initiative GWAS meta-analyses of population-based cohorts and hospital registries comprising individuals with self-reported or genetically inferred European ancestry. Susceptibility was defined as testing positive for COVID-19 and severity was defined as hospitalization with COVID-19 versus population controls (anyone not a case in contributing cohorts). We repeated the analysis for BMI with effect estimates from the UK Biobank and performed pairwise multivariable MR to estimate the direct effects and indirect effects of BMI through obesity-related cardiometabolic diseases. Using p < 0.05/34 tests = 0.0015 to declare statistical significance, we found a nonsignificant association of genetically higher BMI with testing positive for COVID-19 (14,134 COVID-19 cases/1,284,876 controls, p = 0.002; UK Biobank: odds ratio 1.06 [95% CI 1.02, 1.10] per kg/m2; p = 0.004]) and a statistically significant association with higher risk of COVID-19 hospitalization (6,406 hospitalized COVID-19 cases/902,088 controls, p = 4.3 × 10-5; UK Biobank: odds ratio 1.14 [95% CI 1.07, 1.21] per kg/m2, p = 2.1 × 10-5). The implied direct effect of BMI was abolished upon conditioning on the effect on type 2 diabetes, coronary artery disease, stroke, and chronic kidney disease. No other cardiometabolic exposures tested were associated with a higher risk of poorer COVID-19 outcomes. Small study samples and weak genetic instruments could have limited the detection of modest associations, and pleiotropy may have biased effect estimates away from the null. CONCLUSIONS: In this study, we found genetic evidence to support higher BMI as a causal risk factor for COVID-19 susceptibility and severity. These results raise the possibility that obesity could amplify COVID-19 disease burden independently or through its cardiometabolic consequences and suggest that targeting obesity may be a strategy to reduce the risk of severe COVID-19 outcomes.


Subject(s)
Body Mass Index , COVID-19 , Coronary Artery Disease , Diabetes Mellitus, Type 2 , Disease Susceptibility , Obesity , Renal Insufficiency, Chronic , Stroke , COVID-19/diagnosis , COVID-19/epidemiology , COVID-19/genetics , Cardiometabolic Risk Factors , Causality , Coronary Artery Disease/epidemiology , Coronary Artery Disease/genetics , Diabetes Mellitus, Type 2/epidemiology , Diabetes Mellitus, Type 2/genetics , Genetic Variation , Genome-Wide Association Study/statistics & numerical data , Humans , Mendelian Randomization Analysis , Meta-Analysis as Topic , Obesity/diagnosis , Obesity/epidemiology , Obesity/metabolism , Renal Insufficiency, Chronic/epidemiology , Renal Insufficiency, Chronic/genetics , SARS-CoV-2 , Severity of Illness Index , Stroke/epidemiology , Stroke/genetics
15.
Am J Med Sci ; 361(6): 718-724, 2021 06.
Article in English | MEDLINE | ID: covidwho-1084611

ABSTRACT

BACKGROUND: Inflammation can facilitate development of coronavirus disease 2019 (COVID-19) and cardiac injury is associated with worse clinical outcomes. However, data are relatively scarce on the association between hyper-inflammatory response and cardiac injury among COVID-19 patients. METHODS: The study was designed based on severe and critically ill patients with COVID-19. Information on clinical characteristics and laboratory examinations was collected from the electronic medical records and analyzed. RESULTS: There were 32.4% (n = 107) of patients with cardiac injury. The median age was 67 years, and 48.8% (n = 161) of patients were men. Hypertension was the most common in 161 (48.8%) patients, followed by diabetes (16.7%, n = 55) and coronary heart disease (13.3%, n = 44). Compared to cases without cardiac injury, those with cardiac injury were older, had higher proportions of coronary heart disease, and leukocyte counts, significantly elevated concentrations of N-terminal pro-B-Type natriuretic peptide, high-sensitivity C-reactive protein (hs-CRP), tumor necrosis factor (TNF)-α, interleukin-2 receptor (IL-2R), IL-6, and IL-8, but lower lymphocyte counts. A significant positive correlation was observed between high-sensitivity troponin I and inflammatory cytokines. Logistic regression analysis showed that hs-CRP, TNF-α and IL-6 were independent risk factors for cardiac injury. CONCLUSIONS: Cardiac injury was associated with elevated levels of inflammatory cytokines among severe and critically ill patients with COVID-19, suggesting that hyper-inflammatory response may involve in cardiac injury.


Subject(s)
COVID-19 , Heart Diseases , SARS-CoV-2 , Troponin I/blood , Aged , C-Reactive Protein/analysis , COVID-19/immunology , COVID-19/physiopathology , COVID-19/therapy , Cardiometabolic Risk Factors , China/epidemiology , Critical Illness/epidemiology , Critical Illness/therapy , Diabetes Mellitus/epidemiology , Female , Heart Diseases/diagnosis , Heart Diseases/immunology , Heart Diseases/virology , Humans , Hypertension/epidemiology , Interleukin-6/blood , Male , Risk Assessment , SARS-CoV-2/isolation & purification , SARS-CoV-2/pathogenicity , Severity of Illness Index , Systemic Inflammatory Response Syndrome/blood , Systemic Inflammatory Response Syndrome/complications , Systemic Inflammatory Response Syndrome/virology , Tumor Necrosis Factor-alpha/blood
16.
Scott Med J ; 66(1): 3-10, 2021 Feb.
Article in English | MEDLINE | ID: covidwho-1067034

ABSTRACT

BACKGROUND & AIMS: Though viewed as a critical measure to prevent the spread of the virus, a prolonged homestay may result in unfavourable sedentary behaviour and chronic disease risk. This systematic review focuses on sedentary behaviour resulting from this quarantine period which may elevate the cardiovascular disease risk, obesity, hypertension, cancer and mental health illness. METHODS: Evidence of breaking sedentary behaviour and global recommendations were investigated. Potential unanswered questions regarding sedentary behaviour and physical activity during lockdown were explored. RESULTS: Five systematic reviews and six prospective trials explored the effect of sedentarism affecting chronic disease through potential pathophysiological mechanisms. Sedentary behaviour especially prolonged sitting is found to be a pleiotropic risk factor with altered energy expenditure, adipogenic signalling, immunomodulation, autonomic stability and hormonal dysregulation perpetuating underlying chronic diseases such as obesity, cardiovascular disease, cancer and mental health disorders. CONCLUSION: Breaking sitting and physical activity are found to reverse the adverse effects associated with excessive sitting during the lockdown.


Subject(s)
COVID-19/prevention & control , Cardiovascular Diseases/epidemiology , Communicable Disease Control , Mental Disorders/epidemiology , Obesity/epidemiology , Public Policy , Sedentary Behavior , Cardiometabolic Risk Factors , Cardiovascular Diseases/metabolism , Cardiovascular Diseases/physiopathology , Chronic Disease , Exercise , Humans , Mental Disorders/metabolism , Mental Disorders/physiopathology , Neoplasms/epidemiology , Neoplasms/metabolism , Neoplasms/physiopathology , Obesity/metabolism , Obesity/physiopathology , SARS-CoV-2
18.
Cytokine Growth Factor Rev ; 58: 102-110, 2021 04.
Article in English | MEDLINE | ID: covidwho-778706

ABSTRACT

The severe form of COVID-19 is marked by an abnormal and exacerbated immunological host response favoring to a poor outcome in a significant number of patients, especially those with obesity, diabetes, hypertension, and atherosclerosis. The chronic inflammatory process found in these cardiometabolic comorbidities is marked by the overexpression of pro-inflammatory cytokines such as interleukin-6 (IL-6) and tumoral necrosis factor-alpha (TNF-α), which are products of the Toll-Like receptors 4 (TLR4) pathway. The SARS-CoV-2 initially infects cells in the upper respiratory tract and, in some patients, spread very quickly, needing respiratory support and systemically, causing collateral damage in tissues. We hypothesize that this happens because the SARS-CoV-2 spike protein interacts strongly with TLR4, causing an intensely exacerbated immune response in the host's lungs, culminating with the cytokine storm, accumulating secretions and hindering blood oxygenation, along with the immune system attacks the body, leading to multiple organ failure.


Subject(s)
COVID-19/complications , Cardiovascular Diseases/etiology , Metabolic Diseases/etiology , SARS-CoV-2/pathogenicity , Toll-Like Receptor 4/physiology , COVID-19/epidemiology , COVID-19/pathology , Cardiometabolic Risk Factors , Cardiovascular Diseases/epidemiology , Comorbidity , Cytokine Release Syndrome/epidemiology , Cytokine Release Syndrome/etiology , Humans , Metabolic Diseases/epidemiology , Multiple Organ Failure/epidemiology , Multiple Organ Failure/etiology , Severity of Illness Index
SELECTION OF CITATIONS
SEARCH DETAIL